Markovian Dynamics on Complex Reaction Networks
نویسندگان
چکیده
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
منابع مشابه
Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملComputing time scales from reaction coordinates by milestoning.
An algorithm is presented to compute time scales of complex processes following predetermined milestones along a reaction coordinate. A non-Markovian hopping mechanism is assumed and constructed from underlying microscopic dynamics. General analytical analysis, a pedagogical example, and numerical solutions of the non-Markovian model are presented. No assumption is made in the theoretical deriv...
متن کاملEpidemic Spreading in Non-Markovian Time-Varying Networks
Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We show that...
متن کاملH ∞ Cluster Synchronization for a Class of Neutral Complex Dynamical Networks with Markovian Switching
H ∞ cluster synchronization problem for a class of neutral complex dynamical networks (NCDNs) with Markovian switching is investigated in this paper. Both the retarded and neutral delays are considered to be interval mode dependent and time varying. The concept of H ∞ cluster synchronization is proposed to quantify the attenuation level of synchronization error dynamics against the exogenous di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012